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Ising replica magnets 
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Institut Laue Langevin, BP 156, 38042 Grenoble Cedex, France 

Received 18 April 1979, in final form 26 June 1979 

Abstract. The phase structure of systems of n replicas of Ising systems having both 
inter-and intra-replica exchange is investigated within mean field theory. Cooperative 
phases are found with inter-replica ordering both with and without intra-replica ordering. 
First-order and second-order transitions are found. 

1. Introduction 

In their seminal paper on spin glasses, Edwards and Anderson (1975, to be referred to 
as EA) employed the now (in)famous replication procedure in which the average free 
energy of a quenched spatially disordered system is investigated via the mathematical 
identity 

- 1 -  
In Z= lim - (Z"-  l ) ,  

n-to n 

where the bar denotes an average over the spatial disorder. 2" is identified as the 
partition function of n replicas of the original system and z" is interpreted as the 
- partition function of an effective pure system. Unfortunately the practical evaluation of 
2" and application of the limit has involved approximations and/or assumptions of less 
rigour then (1.1): even superficially 'exact' procedures (Sherrington and Kirkpatrick 
1975) can lead to unphysical results when applied to systems with quenched spatially 
random distributions of frustrated interactions. (A frustrated system is one in which no 
state can be found which satisfies all the exchange interactions (Toulouse 1977).) Much 
effort has been put into trying to find a useful valid application of the n += 0 replica trick 
for such systems, but so far without success. 

The procedure of averaging Z" over the spatial disorder yields effective Hamil- 
tonians which are lattice-translationally invariant but which have more complicated 
interactions than those of the original (disordered) system. Conventionally the spin- 
glass literature has (naturally) emphasised the limitingly small n behaviour. In this 
paper, however, we consider the simplest classes of Hamiltonians and effective Hamil- 
tonians suggested by the z" procedure but concentrate on finite integral values of n. 
Suzuki (1977) has also considered the finite-replica problem but appears to have 
ignored the possibility of first-order transitions, which we show to be important. 

The class of systems we study here are those described by Hamiltonians of the form 
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where the Sf are Ising-like spins taking the values Jtl, the subscripts refer to spatial 
location and run over all N sites of a lattice, the a, p label 'replicas' and may take II 
values, and the symbols (i, j )  and (CY, p )  refer to pairs of non-identical indices. For a 
physical system n must be integral and positive. For n = 1 the J ( 2 )  interaction vanishes, 
so interest starts at n = 2. The thermodynamic limit is N +03 and does not affect n i .  
Extensions of (1.2) to general m-dimensional spins (vector or Potts) are readily 
envisaged but will not be discussed here. For simplicity we restrict our discussion to 
cases in which the Fourier-transformed exchange interactions J ( ' ) ( k ) ,  J(')(k)  have their 
maxima at k = 0; any magnetic order is then translationally invariant. 

Equation (1.2) can be considered as a generalisation of the Ashkin-Teller model 
(Ashkin and Teller 1943). In its general form it does not seem to have been studied 
systematically. Certain special cases related to known models can, however, be 
identified: 

(i) if J'2' = 0, the model reduces to n uncoupled Ising models. 
(ii) in the limit J(') infinitely larger than .I('), h, or T, there are projected out as 

relevant only the states in which the S, = ( S t ,  . . . , S : )  are parallel or antiparallel from 
site to site; that is { S , }  = *{S, } .  If h is zero all such states are of importance; if h is 
non-zero the only ones relevant in the thermodynamic limit have all the replica 
components on any site identical. In either case the relevant part of the free energy 
(apart from uninteresting constant shifts) is 

F = - k T  In Z", 

where 2" is the partition function of a simple (S" = k l )  Ising model with effective 
exchange nJ(')  and effective magnetic field nh. 

(iii) for n = 2 ,  if J'2' = 2J'" and h = 0, the energy associated with any pair of spins 
(i, j )  is the same for all combinations of {SP}, {SF} which are not identical on each of the 
sites, and is different from that with identical spins on each site (which, further, is itself 
independent of the precise set). The model thus reduces in this case to a four-state Potts 
model. 

(iv) if n = 2, d = 2 (d is the spatial dimension), one obtains a standard Ashkin- 
Teller model; for a recent discussion see Knops (1975). 

Equation (1.2) is also reminiscent of the discrete spin cubic (DSC) model (Kim eta1 
1975, Kim and Levy 1975, Kim etal l976,  Aharnoy 1977). For the case of both dipolar 
and quadrupolar exchange the DSC Hamiltonian is identical with (1.2) but differs in its 
allowed spin space. The space for the DSC: model is that in which, for each i, any one SP 
can take the values * l ,  but the rest are zero; it has only 2n elements per site as 
compared with our 2". The models are equivalent only for n = 2 .  

The model of (1.1) as it stands does not result from an Edwards-Anderson 
treatment of a Hamiltonian spin glass, but there can arise the related effective 
'Hamiltonian' with 

J!;' + J 2 / k T ;  (1.3) 

this effective Hamiltonian results from averaging 2" for a random Ising system 

i. One dubious procedure in the spin-glass analyses concerns interchange of the limits n -+ 0 and N +. CO. Here 
n is assumed fixed. 
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with the Jij distributed randomly and independently with probability distribution 

(1 .5 )  2 - 1 / 2  p ( ~ j j )  = (2r.1 e~p[-(Jij - J " ' ) ~ / ~ J ~ ]  

(Sherrington and Kirkpatrick 1975).  The EA treatment further takes the limit n -+ 0 
but we shall consider only finite n t .  We shall present results based on ( 1 . 1 ) ;  the 
corresponding results for the 'EA'-type model follow from the transformation (1 .2) .  

In this paper we treat ( 1 . 1 )  only within the mean field approximation$, since even 
such an approximation presents an interesting phase diagram. Mean field theory 
becomes exact in the limit where the spatial sums are taken over all sites with the scaling 

J;;) = i ( r ) / N ,  r = 1, 2.  (1 .6)  

2. Mean field theory 

Within mean field theory one introduces the order parameters§ 

m a  = ( S ? ) ,  
q'"P' = (SYS$), 

(Sherrington 1975) and employs the substitutions 

Using the shorthand 

i Jp' = J'", r = 1 '2 ,  

(2 .3 )  

(2 .4 )  

the free energy per spin becomes 

where the trace is single-site. Minimisation off with respect to m a and q'@' yields their 
self-consistency equations 

m a  =Tr  S"@/Tr a, 
q'"' = Tr SaSP@/Tr @, 

where is the exponential in (2 .6 ) .  

t See the previous footnote. 
$ The model is in fact exactly soluble in one dimension (using transfer matrix techniques) but the results are 
not typical of higher dimensions. For d = 2 or 3 ,  real-space renormalisation-group methods can also be 
employed. 
8 Were the maxima of J ( l ) ( k )  and J ( * ) ( k )  at non-zero k-values we should need to employ corresponding 
staggered order parameters. 
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For general n the number of possible solution symmetries is very large, but it may be 
shown (van Hemmen and Palmer 1979) that the solutions of (2.7) and (2.8) which are 
absolute minima of (2.6) have the properties 

(2.9) 

(2.10) 

with all the q'"' real and such that for n 2 3 for any set ((U, p, y )  the product 
q(ap)q(P")q("a' is positive. Without loss of generality we consider the symmetric solution 

q'"P' = q ;  (2.1 1) 

the other possibilities follow by simple transformation. The identity 

exp( 77 " 
S " S P )  = (2.rr)-'/' Im dz exp( -z2/2 + 77 ' l 2 z  S" - n77/2 

("0) -m 
(2.12) 

yields the free energy and correlation functions in the compact forms 

f =  nJ("m2/2+n(n - 1)J'2'q2/4+nJ'2'q/2 
CO 

dz exp(-z2/2)(2 cosh E)n, (2.13) 

5TCO dz exp(-z2/2) tanh' S cosh" E 
I_, - k T  l n ( ( 2 ~ ) - ' / ~  

(2.14) - - (S" . . . S")  
r indices JYm dz exp(-z2/2) coshn E ' 
all different 

where 

E = (J"'m + h) /kT  + (J'2'q/kT)'/2z. (2.15) 

m and q are given self-consistently by those solutions of (2.14), with r = 1 , 2  respec- 
tively, which minimise f. 

m = 0, q = 0; paramagnet; 

We shall refer to the possible phases as follows: 

m = 0, q # 0; replica magnet; 

m f 0, q f 0; ferromagnet. 

3. Single exchange 

In this section we consider the simplified case J"' = 0, h = 0. 
It is convenient to rewrite the self-consistency equation for q in terms of 

x = J"'q/kT; 

the self-consistency condition is then 

k Tx JTCO dz exp(-z2/2) tanh'(x'/'t) cosh"(x'/'z) 
JyCO dz ex~( -z2 /2 )  cosh"(xl/'z) (3.1) -- 

J(2) - g(x) SE 

For n = 2 equation (3.2) yields a second-order transition, reducing to the self- 
consistency condition of a pure Ising model, 

(kT/J"')x = tanh x, (3.2) 
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as indeed is apparent directly from (1.1).  For n > 2 the transition is of first order. This is 
immediately apparent from the small-x expansion of g ( x ) ,  

g ( x ) = x + ( n - 2 ) x 2 + * ” .  (3.3) 

We further see immediately that in the low-temperature phase the sdution of (3.1) may 
have q of either sign for n = 2 but has positive q for n > 2. Table 1 gives critical 
temperatures and order parameters for various n. The explicit calculation for n +CO is 
given in the Appendix. Figure 1 shows q(T) ,  which is finite for 7’ < T,, zero for T > T,. 

The zero-field susceptibility is simply expressed in terms of q(T) :  

x(J‘”= 0,  h = 0 )  = (kT)-’[l + ( n  - l )q (T ) ] .  (3.4) 

Table 1. Transition temperature and order parameters for JC1) = h = 0. Temperature is 
measured in units of J‘2’/k.  p is ( S a S p S y S s )  with all indices different. 

2 1 0 0 
3 1.2137 0.6667 0 
4 1.5318 0.8202 0.7322 
5 1.8731 0.8839 0.8162 

--CO 0.363n 0.981 0.962 

9 
n:L 

0 1 

kT/J12 ’  

Figure 1. q ( T )  for n = 2, 3, 4. 

4. Dual exchange 

When both J ( l )  and J(’) are non-zero, the self-consistent solution for m and q is more 
complicated. Let us concentrate on h = 0. The phase diagrams are then as illustrated in 
figure 2 ;  those for n > 2 are given only for the lower end of the T, J ( l )  range, but for 
larger T, J ( l )  have the same qualitative form as for n = 2. For all values of n there are 
both first- and second-order regimes. The transitions between paramagnetism and 
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Figure 2. Phase diagram for n = 2 ,  3, 4. Full lines indicate first-order transitions. Dotted 
lines indicate second-order lines. The broken line indicates the ferromagnetic transition 
line in the absence of inter-replica exchange. For n > 2 only the lower T, J"' region of the 
phase diagram is shown. In all cases the paramagnetic-ferromagnetic transition approaches 
the T = J ( ' )  line with a crossover to second-order behaviour at T = [3(n - 1) + l ] J " ' / k .  For 
n = 2 and n = 3 the replica-magnet to ferromagnet transition has a crossover from second- 
to first-order at kT/J"' = 0.8537, 1.1893 respectively. 

replica-magnet ordering are as obtained in the last section; the origins of the transition 
orders of paramagnetic-ferromagnetic and replica-magnet to ferromagnet transitions 
can be seen from an expansion of the self-consistency conditions in terms of power 
series in m. 

With the shorthand notations 

the self-consistency equations are 

Tr, S1 exp(y Z, Sa + x (3' = Tr, exp(y X, S" f x  X ( a p ,  S"Sp) 
SaS') 

(rm dz exd-z2/2)  tanh E cosh" 8 
]-"oo d r  exp(-z2/2) coshn E ' 

Tr, S1S2 exp(y Xa S" + x X(,,) S"Sp) 
S"S')- ($?' = Tr, exp(y Za S" + x  

- - dz exp(-z2/2) tanh' 3 cosh" S 
]?m dz exp(-r2/2) cosh" E ' 

( 4 . 1 ~ ~ )  

(4.lb) 

(4.2) 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 
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Expanding (4.3) and (4.4) in powers of y gives 

Tr, S'S2 exp(x I;(ap) SUSp)  
Tr, exp(x S"Sp) 40 = 

- - dz exp(-z2/2) tanh2(x"2z) cosh"(x1'2z) 
JZm dz exp(-z2/2) cosh"(x'/*z) 9 

1 2 3 4  Tr, S S S S exp(x I;;(ap) SUSp)  
Tr, exp(x P S p )  Po = 

- - Jrm dz exp(-z2/2) tanh4(x"2z) cosh"(x1/2z) 
s?m dz exp(-z2/2) cosh"(x1/2z) 

(4.7a) 

(4.7b) 

(4 .8a)  

(4.8b) 

As is clear from (4.5) and (4.6) p is only relevant for n 2 4 .  Note that qo and p o  are 
implicit functions of y through (4.6). Solving for qo to order y 2 ,  (4.5) can be expressed in 
explicit orders in y as 

(kT/J ' " )y  = y [ l +  ( n  - 1)qooI 

+y3(-' 3 -~(n- l )qoo-3n(n-1)2q:o  + i ( n  - 1 ) ( n - 2 ) ( n - 3 ) p o  

( n  - 1)[1+2(n -2)qO0-$n(n - l)qg0 +i (n  -2) (n  -3)poo] 
( ( k T / f 2 ' ) [ 1 + 2 ( n  - 2 ) q 0 0 - f n ( n  - 1)q;o +$(n -2) (n  -3)p00]-* - 1)  

+ O(Y 3), (4.9) 

+ 

where qoo, poo are given by (4.7) and (4.8), with x determined by (4.6) with y = 0 ;  that is 
by the values resulting from the treatment of 8 3. The order of the transition to 
ferromagnetism is then determined by the sign of the coefficient of y 3  in (4.9); if 
negative the transition is second order, if positive, it is first order. 

From (4.9) we see immediately that if we are in a region of (J"', T )  space for which 
qoo (and thus poo) is zero the coefficient of y 3  in (4.9) becomes 

- f + ( n  - l ) ( k T / J " ) -  1)-', (4.10) 

so that the transition is second order if T > TL2), first order if T < TL'), where 

TL2) = (3n  -2)J'"lk.  (4.11) 

For T > T?) the transition temperature is given by 

T, = J( ' ) /  k. (4.12) 

As T tends to zero, poo and 400 both tend to unity and the coefficient of y 3  thus tends 
to -n3/3  which is always negative (for the n of interest here). It thus follows that the 
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low-temperature transition from replica-magnet to ferromagnet is second order with 

(4.13) 

Note that as J(')+ 00, qoo(Tc)+ 1 so that Tc+ nJ'"/kwhich is the mean-field transition 
temperature of an Ising model with exchange nJ'". This is as expected on the basis of 
special case (ii) of 0 1. For n = 2 and ?I = 3 the replica-magnet to ferromagnet 
transitions become first order at kT/J"'= 0,8537, 1.1893 respectively. For n 2 4  the 
transition is everywhere second order. 

In the regions of parameter space for which the spontaneous magnetisation is zero 
the zero-field susceptibility is given by 

x ( m  = 0, n = 0) = (xi' --J(")-', (4.14) 

where x0 is the susceptibility of the system with J'" = 0, given by equation (3.4). 

5. Effect of a magnetic field on the replica-magnet transition 

The zero-field susceptibility has already been given above in equations (3.4) and (4.13). 
In the n -+ 0 limit it has been shown (Sherrington and Kirkpatrick 1975, Fischer 1976) 
that a finite field removes the 'spin-glass' phase transition, replacing the cusp in the 
susceptibility by a smooth peak. We here consider the corresponding question for the 
finite-n replica-magnet transition. We take J' ')  to be zero. 

For n 2 3 the zero-field transition is first order. This character is maintained also in a 
small field, albeit that q is field-dependent both above and below the transition. For 
n = 2 the zero-field transition is second order and can be seen to be smoothed out by a 
small field. Expanding the self-consistency equation for q in powers of h, one obtains 
for n = 2 

q Tx/J"' = tanh x + @h)' ( l -  tanh' x )  + O(h4), (5.1) 

so that q varies continuously as a function of temperature for h finite; cf the related 
expression for a pure ferromagnet, 

Tx/J = tanh x + p h  +O(h2) .  ( 5 . 2 )  

6. Stability of the solutions 

Our choice of all m" equal and all q'"' equal is justified by a proof of Lieb (see van 
Hemmen and Palmer 1979), but, in view of a recent criticism by de Almeida and 
Thouless (1978) of this choice when made by Sherrington and Kirkpatrick (1975), it 
seems appropriate to demonstrate the stability of our choice also by the method of de 
Almeida and Thouless. We give the analysis only for the case J" )  = h = 0. A similar 
analysis proves the stability in the general case. 

The de Almeida-Thouless procedure consists of expanding f to quadratic order in 
(m" - m), (q(@'-q)  and examining the eigenvalues of the fluctuations. Stability 
requires that they be positive definite. The expansion is given by de Almeida and 
Thouless (1978) and here we present only the results. 



Ising replica magnets 645 

For J'l' = h = 0 the eigenvalues associated with (q"" - q )  for integers n L 3 are 

h l  = 1 - (J" ' /kT)[1+2(n  -2)qo-+n(n - l )q2++(n -2) (n  - 3)p] ,  ( 6 . 1 ~ )  

A 2  = 1 - ( J " ' / k T ) [ l +  ( n  -4)q - ( n  - 3)pl ,  ( 6 . l b )  

h3= l - ( J " ' / k T ) ( 1 - 2 q + p ) ,  ( 6 . 1 ~ )  

where 

q = (SV), ff t'P, 
p = (sasps~ss), all indices different, 

with the correlation functions being taken in the uniform mean-field state; q and p are 
given by (4.7) and (4.8) with x chosen self-consistently. The degeneracies of the above 
modes are 

g1= 1 ,  g2 = ( n  - 11, g3 = n ( n  - 3 ) / 2 .  (6.4) 
For n = 2 there is only one eigenfunction with eigenvalue A l .  Eigenmodes h z ,  h3 are 
spurious, albeit with 'cancelling' degeneracies 1, -1 ! 

For T > T,, q and p are both zero so that the above eigenvalues all become 
( 1  - J ' 2 ' / k T ) ,  which is positive for all T > T, since T,3J '2 '  (see table 1).  For n -.' 2 the 
eigenvalue becomes zero exactly at T = T, as expected for a second-order transition. 

For T < T,, substitution of p ,  q values readily shows all the eigenvalues to be 
positive. A I  is simply expressed in terms of g ( x )  (see 0 3 )  as 

A 1  = 1 - (J" ' /kT) (ag(x) /ax) .  (6.5) 

It is clear from the self-consistency condition (3.1) that this is always positive, becoming 
zero at T = T, only for n = 2 where the transition is second order and the softening of 
the above mode is its signal. 

7. Conclusion 

In this paper we have considered a class of Hamiltonians which are suggested by recent 
analyses of spin-glass systems. They correspond to sets of Ising replicas with both intra- 
and inter-replica exchange. Spin-glass analysis is concerned with a limiting behaviour 
as the number of replicas, n, is let tend to zero. Here analysis has been of the finite 
replica case. The discussion has been limited to mean field theory but extensions could 
be made in standard ways, as could generalisation to higher-dimensional spins. 

We have shown that these systems can exhibit two types of cooperatively ordered 
phases: (i) with both inter- and intra-replica spin alignment, (ii) with inter- but not 
intra-replica alignment-we call these ferromagnetic and replica-magnetic ordering 
respectively. With only inter-replica exchange one obtains only replica-magnetic 
ordering with the transition to paramagnetism of second order for n = 2,  first order for 
n > 2. When intra-replica exchange is also present, ferromagnetic order is possible in 
certain regions of parameter space. For all n the transition to ferromagnetism has both 
second-order and first-order sections. Analytic continuation of the phase diagrams 
towards n + 0 would thus be non-trivial; on the other hand the self-consistency 
equations for the order parameters are expressible in a form which is analytically 
continuable and indeed has been the basis for the spin-glass analyses (Edwards and 
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Anderson 1975, Sherrington and Kirkpatrick 1975), although the validity of such a 
procedure is questionable (Sherrington and Kirkpatrick 1975, de Almeida and Thou- 
less 1978). 

Acknowledgment 

The author would like to thank Dr  B Southern for several helpful comments on this 
work and on the text. 

Appendix 

Large n limit 

It is well known that the thermodynamics of certain classical m-vector ferromagnetic 
models can be solved exactly in the limit m + 00 (Berlin and Kac 1952, Stanley 1968). In 
the present problem it is tempting to look for a corresponding solution in the limit 
n + W. It is clear that this limit can be relevant only if f 2 '  is important (for f 2 )  zero the 
problem reduces to n independent Ising models). Unfortunately, even for the f 2 '  

interaction only, this problem does not seem to be exactly soluble, but one can find a 
formal solution in terms of (in general) non-exactly soluble Ising models-of course in 
the special cases where the Ising models are soluble then so is the whole problem. On 
the other hand we are able to solve exactly the mean field equation (2.13). 

Let us start by considering the solution of the mean field equation (2.13) with J"),  
h = 0, and look only for T,, qc for large n. If we choose units f 2 )  = n-', the resulting T,, 
q, are n-independent to dominant order for n + 03. The transition is clearly first order. 
T,, qc are given by: (i) equating to zero the large-n limit of the difference between the 
free energy evaluated from (2.13) with q = qc and that with q = 0, (ii) requiring 
self-consistency for qc as evaluated from (2.14). The free energy condition gives 

For iarge n the integral is dominated by the maxima of the exponent, giving 

(~C2/4) + (qCp2/2) - kTc In cosh(qcp/kTc), 

p = tanh(q,p/kT,). (-43) 

(A21 

where p is a non-trivial solution of 

p is thus the mean-field order parameter of an effective Ising model of exchange 
strength 4,. qc itself is similarly determined by extremum-dominated integrals and its 
self-consistency equation yields (using (A3)) 

(A4) 2 
q c = p  , 

so that finally we have the critical conditions 

p = tanh(p3/kTc), 

3p4 /4  = kT, In cosh(p3/kTc). 



Ising replica magnets 647 

Solving, we obtain 

kTc= 0.363, q c =  0,981. 

Let us turn now to the investigation of the model in the large-n limit without 
approximation. We again start with the case J“’ = h = 0. Apart from an uninteresting 
constant, the free energy is 

j.. 
( i j )  2 k T  a 

F = -kT Tr, exp[ (&)(I SPSq)2] 

2 1 /2 

= -kT Trrl { ( 2 ~ ) ” ~  dxij exp[ -?+ (&) xij  1 STST]}  
(ii) La 

where - 
1 (J j /  kT)  1’2xijSiSi J , 
(ii) 

the last trace being over ordinary Ising spins. For n + 00, steepest-descent analysis gives 
the overwhelming contribution to the free energy, 

F = n  (A;/2)-kTlngeff I , (A91 

ieff = Tr exp( (ii) 1 .f:’2AijSiS,lkT) 

[ (ii) 

where 

(A 10) 

and {Aii} is determined by minimising F ;  that is 

= jz” (SiSj)eff. (-412) 
Thus a knowledge of the properties of an Ising model as characterised by (AlO) serves 
to solve for the large-n limit of the present model. On symmetry grounds we expect that 
equivalent pairs of sites will have the same Ai, so that knowledge of a periodic Ising 
model will suffice. 

We shall not pursue the general solution further except for the special case of an 
infinite-ranged interaction, 

1, = .f/ N, all (ij), (A131 

Aij = A/N, all (ij). (A14) 

-kT In Zefr = N{j1’2fip2/2 - k T  ln[2 co~h(.f’/~Ap/kT)]}, 

from which results 

Standard analysis (such as that of Miihlschlegel and Zittartz 1963) then readily gives 

(A151 

(A161 

where 
“1/2*  p = tanh(J ApIkT). 
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Similarly 
i = j 1 / 2  2 

( U ,  

so that 

F = nN{3.fp44/4- k T  ln[2 cosh(.fp3/kT)]}, 

with 

p = tanh(.fk3/kT). (A191 
This is identical with the result obtained earlier from the solution to (2.13), as is 
expected. 

The above can be extended to J (" ,  h # 0. The analysis is straightforward and we 
give only the results. (A10) is modified to read 

and corresponding modifications are made in the exponents of (A1 1). For the infinite 
range problem to be physical we require also J") to scale inversely with N :  

JS) = .f(')/N, all (ij). (A2 1)  
(A18) then becomes 

4 2 

F = n 3.fk+.f'1'k- k T  ln[2 cosh{[(.fp2+.f('))p + h]/kT}I), (A22) 
4 4  2 

with 

p = tanh{[(jp2+.f(1))p +hl/kT}. 

This can also be interpreted as the mean field solution to a finite-range problem if .f, ?(') 
are identified as 

i 

As before, 

q = (SPSP), a # P  
(A261 

l m l = ( S P ) = p ;  6427) 

m =0 ,  (A281 

2 
= p  , 

and, provided h or J is non-zero, 

this last result is in contrast to that for h = .f(l) = 0 for which 

due to the equivalence of solutions to (A23) with positive and negative k. Thus any J") 
or h causes any ordered phase to have a ferromagnetic component. It is readily shown 
from (A23) that the condition for second- to first-order change in the paramagnetic 
transition temperature for h = 0 is in agreement with the prediction of (4.11). 
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